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Singlet fission is a process in which a chromophore A in an excited singlet state (S 1) transfers

part of its excitation energy to a neighbouring chromophore B in the ground state (S 0) and

both are converted into triplet excited states (T1) [1,2]:

A(S1) + B(S0) → A(T1) + B(T1).

The process represents an opportunity to improve the solar energy conversion efficiency in

photovoltaic devices. In fact, a sensitizer capable of quantitative singlet fission may generate

two charge carrier pairs per absorbed photon in a semiconductor material.

The efficiency of singlet fission depends on the interaction between the two chromophores,

which  in  turn  is  highly  sensitive  to  their  relative  distance  and  orientation.  Detailed

investigations  on  the  optimal  mutual  dispositions  of  the  two  chromophores  are  therefore

strongly needed for the development of singlet fission materials.

We propose here a computational strategy to select the most favorable dimeric geometries for

singlet fission and to test their suitability by simulating the excited state dynamics. For the

first  step,  we  present  a  diabatization  procedure  which  allows  to  compute  the  electronic

coupling between the initial and final state of the process in a semiempirical context. For the

excited state dynamics simulation, we use a semiclassical trajectory surface hopping approach

with “on the fly” semiempirical  calculation of  electronic  energies and wavefunctions  [3].

Performing the simulation of the excited state dynamics is particularly important not only to

determine the singlet fission quantum yield, but  also to identify competing processes and

other deficiencies of the selected chromophore [4].
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Our research aims to investigate the photophysics and the photoreactive paths activated in
non-steroidal anti-inflammatory drugs’ (NSAIDs) upon photon absorption in order to assess
whether in-silico simulations can help to predict their photostable [1] or phototoxic nature.

To this purpose, we have first modelled the absorption spectra of NSAIDs, such as aspirin,
carprofen, naproxen and ibuprofen in gas phase with the time dependent density functional
theory (TD-DFT) [2] computational protocol. The most probable photophysical deactivation
mechanism of the excited molecules has been investigated with the help of semi-classical
dynamics simulations, performed with the surface-hopping algorithm incorporating spin orbit
coupling [3].
Higher chances of producing phototoxic species are expected the longer the lifetime of the
excited states, so the key behind the photostability of a drug is the accessibility of  internal
conversion  funnels  to  reach  the  ground  state  in  an  efficient  manner.  These  simulations
allowed us to unravel that large molecules usually stay excited in the triplet manifold and
smaller decay easily to the ground state.

Our goal is to translate the deactivation mechanisms in to a phototoxicity alert that could be
introduced at early stages of the drug discovery process to help mitigating the risks associated
with their exposure to light.
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The exceptional energy difference between single, double and triple nitrogen-nitrogen

bonds makes polynitrogen compounds promising candidates as high energy-density

materials.

Recent discoveries[1,2] have shown that the synthesis of such molecules is now a

reality, although the difficulty for their storage still remains an issue.

Indeed,  such  compounds  are  generally  highly  reactive,  in  particular  at  ambient

conditions, and a major challenge is to find ways to improve their stability.

A possible approach is their confinement inside nanostructures of various types, for

instance carbon nanotubes, such that the restricted space within the cavity and the

host-guest interactions favour stabilization.

In this  work we present an in-depth investigation of the confinement of the azide

anion, a common precursor in the synthesis of larger nitrogen clusters, inside carbon

nanotubes of different sizes and lengths.

In particular, quantum chemical calculations (using both wave function and density

functional methods) of interaction energies, relaxation effects and an analysis based

on natural bond orbitals will be presented along with a study of the effects on these

properties with respect to the diameter and length of the nanotubes[3].

Moreover,  preliminary  results  of  molecular  dynamics  simulations  will  also  be

presented,  in particular  highlighting the implementation of the improved Lennard-

Jones potential[4] in the DL POLY 4 program package.

A  specific  model  potential  will  also  be  introduced,  which  treats  explicitly  the

induction effects due to the presence of the excess charge on the nitrogen species,

which allows for an analysis of the interaction types involved between the nanotube

and the azide anion and a direct comparison to the quantum-chemical study.

Figure 1. MESP of a CNT(5,5) perturbed by the presence of the azide anion.
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Properties of nanomaterials are known to be size dependent and generally are very different

from those of the corresponding bulk. Such behaviour, which is strongly system and structure

dependent,  allows  one  to tune  material’s  properties  by  varying  their  dimensions.  This

tunability opens up many possibilities in nanotechnology for manufacturing materials with

tailored properties for specific applications. Thus, understanding size-dependent properties of

nanoparticles  and  mechanisms  taking  place  at  the  nanoscale  is  fundamental  for  the

improvement of existing materials and for the designing of more efficient and optimized ones.

However, the synthesis of nanomaterials and their experimental characterization is difficult,

especially for very small systems. Here, theoretical modelling plays a fundamental role in the

characterization  of  small  nanoparticles  for  both  helping  experimental  interpretation  and

predicting novel and potentially synthesizable materials with new properties. 

Here we focus on modelling of titania, silica and titanosilicate based materials because of

their  technological  and environmental  importance as  they are  employed in heterogeneous

(photo-)catalysis, electronics and gas sensing to cite a few [1-3]. For such systems, we firstly

performed global  optimization studies  in  gas-phase and water containing environments  in

order to identify the structures of nanoparticles. Secondly, we studied structural, energetic and

electronic  size-dependent  properties  of  such  nanoparticles  as  well  as  their  reducibility,

extrapolating up to the bulk macroscopic level in some cases. For such characterization we

used accurate quantum mechanical methods based on Density Functional Theory (DFT). Our

results point to a series of important predictions, such as for instance: (i) the crystallinity of

titania  nanoparticles,  which is  the key property  for  the photoactivity  of  such  material,  is

predicted to emerge when nanoparticles become larger than 2.0-2.5 nm [4]; (ii) the mixing of

titania and silica to form titanosilicates, which are an important class of materials used in

industry as catalyst, is found be thermodynamically favourable at the nanoscale, contrarily to

the bulk [5]; (iii) the hydration of silica and titania nanoclusters, which plays an important

role in the aggregation and nucleation process during the synthesis of larger nanoparticles, is

controlled  by  the  environmental  factors  such  as  temperature  and  presence  of  water  as

predicted from calculated phase diagrams [6].
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Aluminum  is  the  third  most  abundant  element  on  Earth’s  crust;  however,  its  chemical
properties prevented its utilization in the biochemical cycles of living organisms. In the last
Century, human intervention has made such metal so highly (bio)available that it is often said
that we are living in “The Aluminum Age” [1], raising justified concerns about the potential
toxic role of Al(III) in the human body.
Due to the complex features  of  this  exogenous ion that  make experimental  procedures  a
challenging  task,  state-of-the-art computational  approaches  would  help  to  unveil  the
molecular basis of the interactions of aluminum in the  biological environment.
The goal of this project is to investigate the potential detrimental effects of this metal with
respect to different  bioligands from a thermodynamic point  of view [2],  by means of the
evaluation  of  binding  affinities  and  chemical  bond  and  molecular  properties  in  aqueous
solution. 
Moreover, we developed and applied a computational protocol, based on different approaches
(Fig. 1), suitable for the design and tuning of new and efficient chelating agents aimed to
improve the removal of this exogenous ion.

Figure 1. Schematic representation of the computational protocol developed in our work.
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Previous  works  have  established  the  importance  of  the  interaction  biomolecule  –water
environment  in  determining molecular  structure  and function[1],  molecular  recognition[2]
and  the  fidelity  of  DNA  replication  itself[3].  Already  Watson  and  Crick  indicated
tautomerization as the main cause of DNA mispairing[4]. The incidence of such mispairing,
according to Topal and Fresco, may be enhanced, among other factors, in presence of base
analogues,  as  5-bromouracyl  (5BrU)[5].  Is  that  true? Here we present  how, by means of
experimental and molecular tools, we have tried to answer this question. The experiments,
performed  at  the  ARIBE  facility[6],  involve  collisions  between  neutral  clusters  of
[5BrU]m(H2O)n and a C4+ ion at  36 keV .  The computational  approach to  such a system
consisted of both static calculations, aiming to sample the potential energy surface of different
possible  reactive  species  at  m062x/6-311++g(d,p)  level  of  theory[7],  and  of  Born-
Oppenheimer molecular dynamics (BOMD)[8] using the same functional and a SVP basis set,
where we have simulated entire sequences of the system after energy has been deposited with
an ionizing collision. Figure 1 presents one of the mentioned sequences obtained from the
MD. The combination of both results helped us give an interpretation of the fine chemistry
involved in the fragmentation processes occurring in the collision camera, which lead to the
formation of unexpected extra-hydrogenated fragments.

Figure 1. Snapshots from one of the BOMD trajectories.
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Extended metal atom chains (EMACs) consist of three to eleven metal atoms hold together in

a  virtually  linear  way by multidentate  organic  ligands and as  such can be  considered  as

nanowires. Experimental and theoretical studies have shown that these compounds can indeed

be used to electronically connect  two electrodes. Given the fact  that in most  EMACs the

metal chain is formed by transition metal ions with many unpaired electrons, one may expect

that the electronic structure reflects a considerable multiconfigurational character. Here, we

discuss different aspects of the electronic structure of the Cr3 EMACs with emphasis on the

influence of the axial ligands on the geometry and bond character of the Cr 3 unit. We combine

multiconfigurational approaches such as CASPT2 and GASSCF with effective Hamiltonian

theory to derive relatively simple models from the highly complicated multiconfigurational

wave functions.
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The design of efficient photosensitizers to be used in photodynamic therapy (PDT) can be
strongly supported by theoretical modelling. In this presentation, I will show our efforts to
find novel photosensitizers and improve existing ones, based on BODIPY derivatives and
Temoporfin,  respectively.  BODIPY  derivatives  have  recently  emerged  as  potential
photosensitizing  compounds  which  can  undergo  singlet-triplet  interstate  crossing  –  a
photophysical  process which is  key to  the production of  reactive singlet  oxygen in PDT.
Based  on  the  comprehensive  knowledge  of  the  deactivation  mechanism  of  the  parent
compound [1], BODIPY derivatives that can both increase the ultrafast internal conversion to
the  electronic  ground  state  have  been  synthetized  [2]  and  investigated  using  quantum
chemical  calculations  and  non-adiabatic  dynamics.  Temoporfin  is  a  commercialized
photosensitizer for which an improved delivery formulation has been developed to enhance
bioavailability,  cellular  uptake  and  selectivity.  Using  all-atom  molecular  dynamics
simulations we provide a novel insight into the nature and the strength of the inter-molecular
interactions between the drug and the carrier  material,  that  are responsible for the carrier
loading capacity and the drug-release mechanism [3]. In a second step, we have analyzed the
effect of the surrounding hydrophobic environment on the relevant electronic excited states of
Temoporfin.
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Increasing the energy density of cathode materials is a central goal of the ongoing research in
Li-ion batteries. This implies improving simultaneously the capacity and the potential of the
ma- terials used at the positive electrode of the electrochemical device. Today, the amplitude
of the electrochemical potential of an electrode material is relatively well-controlled through
an appropriate choice of the redox centre involved in the Li-driven electrochemical reactions.
[1,2]  Meanwhile,  increasing  the  capacity  of  high-potential  materials  is  more  difficult  to
achieve without  penalizing the material  structural  stability.  So far,  materials  showing the
highest energy densities are the Li-rich layered transition metal oxides for which a cumulative
cationic and anionic redox activity has been demonstrated.[3-6] Nevertheless, the origin of
extra-capacity in these systems has raised controversial debates in the literature with no real
consensus  about  the  directions  to  follow to  overcome the  structural  instability  that  often
comes along with the anionic process.[7-9] In this presentation, we use simple concepts of
chemical  bonding,  band  structure  theory  and  topological  tools  of  the  electron  density  to
address the fundamental question of high-energy-density of current batterires with the hope
that  a  common  language  will  help  in  clarifying  the  relationship  between  the  material
electronic structure, the potential, the (extra)-capacity and their consequence on the material
structural stability. [10]  This unified picture clearly highlights the trade-off that needs to be
found between potential and capacity for the next generation of Li/Na-ion batteries.
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Quantum mechanochemistry [1] comprises the theoretical description of mechanochemical

processes  by  quantum chemical  methods.  In  this  talk,  the  JEDI  approach to  analyse  the

distribution of mechanically exerted energy in molecules is presented, which allows for the

prediction of the force-bearing scaffold based on quantum chemical calculations alone. Also,

the in silico development of a molecular force probe for spectroscopic monitoring of forces

acting during protein folding is shown.
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Theoretical predictions of magnetic properties of bistable purely organic molecule-based magnets have

experienced  an  incredible  progress  during  the  last  years.  Our  attention  is  focused  on  dithiazolyl

(DTA)1,2 compounds, being promising candidates for potential technological applications (e.g. storage

devices, quantum computers, etc.). Here, we identify the magnetic topology of the molecular crystals, 3

and we assess  whether  structural  as  well  as  electronic  factors  affect  the magnitude of  the overall

radical···radical  JAB magnetic coupling. We provide magneto-structural correlation maps as a function

of the substituents of the DTA-moiety to highlight which is the static ferromagnetic fingerprint region4.

Moreover, a new mechanism for inducing spin transitions in materials based on planar organic radicals

has been uncovered by means of a combination of static and dynamical analysis. The corresponding

results and conclusions will be presented. 

Figure 1.  Comparison between experimental (◼) and computed (◼/◼) susceptibility curves for the

low temperature (LT) and high temperature (HT) phases of PDTA and TDPDTA systems. In particular,

here  the  reported  the  results  for  the best  1D models  for  both  the  polymorphs considered  in  both

materials.
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The formation of hybrid light-molecule states (polaritons) offers a new strategy to manipulate

the photochemistry of molecules[1]. Polaritonic states are formed when the coherent energy

exchange between the molecule and a confined mode of the electromagnetic field is faster

than any decay rate of the light-molecule system[2]. The confinement of the field to enter the

strong coupling regime has been achieved experimentally by encapsulating a molecule into

optical  or  plasmonic  nanocavities[3].  In  this  work,  we  resort  to  a  FOMO-CI[4]  based

approach to investigate the influence of the strong coupling on the azobenzene excited states.

Traditionally,  a balance between computational performance and accuracy in the study of

photochemical  processes relies on non-adiabatic dynamics  techniques in  the semiclassical

framework (Surface hopping algorithms)[5]. By reworking one of such techniques to take into

account the hybrid light-matter nature of polaritonic states, we investigate the photochemistry

on  polaritonic  states  of  azobenzene  in  vacuum[6].  At  last,  we  present  the  results  of  the

photochemistry in a more realistic system under the strong coupling regime. To this aim, we

include the environment by mimicking recent successful experimental setups[3] through a

QM/MM approach.

Figure 1. Azobenzene encapsulated into cucurbit-7-uril and two Au layers. The setup of the

system allows to achieve the strong coupling regime for azobenzene.
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Modeling the effects of the surrounding environment on a probe chromophore is still an open

research topic in theoretical chemistry. In fact, the response and the optical properties of a

molecular system can vary dramatically depending on the structural and electronic properties

of the surrounding environment [1]. To adequately account for such effects at a reasonable

computational cost, the most general and successful approach is to resort to focused models,

where the chromophore is described at the Quantum Mechanical (QM) level,  whereas the

environment is  treated classically,  through ad-hoc optimized force fields defined within a

Molecular Mechanics (MM) framework [2]. The most reliable QM/MM methods belong to

the so-called polarizable QM/MM family, where the mutual polarization between the QM and

the MM portions of the system is introduced [3].  Most  of  QM/MM approaches focus on

modelling electrostatic interactions, whereas non-electrostatic interactions are only considered

at  a  purely  classical  level,  for  instance  by  exploiting  the  Lennard-Jones  potential,  i.e.

completely independent of the QM density.

In this contribution, a model to include Pauli repulsion and dispersion interactions formulated

in  terms  of  the  electron  density  is  presented  and  discussed  [4].  In  particular,  the  Pauli

Repulsion term is written as a two-electron involving the QM density and a fictitious s-type

Gaussian distribution placed on the MM region [5]. The dispersion term is instead formulated

by  generalizing  the  Tkatchenko-Scheffler  approach  originally  formulated  for  dispersion

corrected DFT functionals [6,7]. The performances of our model will be discussed, as well as

the comparison between QM/MM and full QM calculations, for selected test applications. 
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Ion Mobility Mass Spectrometry (IM/MS) is a technique that allows separation of isomeric species
based on differences  in  their  gas-phase collision cross sections (CCSs),  thus providing specific
information on the potential structure of a compound [1]. Along with Molecular Modelling, it is a
potential tool for small molecule identification by measuring their gas-phase CCSs and comparing
them to theoretically derived CCS databases. A protocol for theoretical determination of CCS has
been introduced in [2] and its improvement is in progress. Our group has developed a script – an
extensive automation of  the protocol,  which allows  all  the routines  and necessary steps  of  the
algorithm to be performed automatically.  Furthermore,  new atomic parameters employed in the
CCS determination software (MOBCAL [3]) have been introduced: the protocol has been modified
to be able to distinguish between different atom types and to assign appropriate parameters. Broad
tests of the protocol with the featured parameters have been made to assess the performance of the
new script. The results have shown that there is a systematic inconsistency with the experimental
data that must be studied further.
A possible source for the observed discrepancy may be the fact that experiments were run in the
environment filled with Nitrogen gas, whereas theoretical calculations were performed in Helium.
Even though a correction factor has been introduced to tackle the issue, a reparameterization of
MOBCAL to calculate metabolites’ CCSs assuming atoms interacting with Nitrogen gas has been
considered as a better workaround. That required a calculation of new Lennard-Jones parameters for
“atom type - N2” pairs and their implementation in the software. Additionally, chemical dynamics
simulations for collision-induced dissociation of molecules under study are in course with the aim
of  getting  more  information  about  the  fragmentation  process.  Theoretical  identification  of
fragmentation pathways may contribute to a better understanding of the processes in the MS part
[4]. Such simulations are performed with the software packages VENUS [5] coupled to MOPAC [6]
for electronic structure calculations.
Thus, further research is aimed at investigating deeper the influence of the introduced changes as
well as searching for possible sources responsible for the differences between the theoretical and
experimental CCS values considering newly obtained results.
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In the framework of organic optoelectronics the luminescence properties of distyrylbenzene
cyano functionalized type molecules, namely DSC molecules, are studied (see Figure 1). The
nonradiative deactivation paths of DCS molecules are primarily explored by using the time
dependent  density  functional  theory  (TDDFT)  followed  by  a  deeper  analysis  with  the
complete  active  space  self-consistent  field  method  (CASSCF)  in  combination  with  the
complete  active  space  second  order  perturbation  theory  (CASPT2).  For  comparison,  the
absorption,  emission  and  conical  intersections  (CIs)  of  simpler  but  chemically  similar
molecules such as ethene, styrene and bistyrene, are also studied, together with the related
spectroscopic features of other molecules of interest in the field (indoline [1] and fluoren-9-
ylidene  malononitrile  [2]).  Both  TDDFT  and  CASSCF/CASPT2  methodologies  lead  to
absorption and emission properties in line with experiments. A rough TDDFT exploration of
the CI region in  α  and  β  cyano functionalized DCS molecules as reported by Shi et al [3]
gives the hint for the main geometrical parameter that might be involved to reach such CI
regions (twisting of the non-cyclic double bond). Besides, energy profiles along distortions of
the vynil double bond at CASSCF/CASPT2 level stress out the actual influence of cyano
groups in the accessibility of the CI region.

 
Figure 1. Chemical structure of molecules under study. From left to right, ethene, styrene,

bi-styrene, DSB α or β DMDCS molecules.
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Time-Dependent Density Functional Theory (TD-DFT) is the most widely used method to

model electronically excited-states [1]. However, as its wavefunction alternatives, it suffers

from a specific limitations. As a consequence, other methods able to reproduce excited-state

properties at a moderate computational cost are always welcome. Among those approaches,

the Bethe-Salpeter (BSE) scheme, an extension of the ground-state  GW method, offers an

appealing alternative to TD-DFT, as it maintains the same scaling with system size [2]. In this

talk, the performances of BSE/GW for excitations energies of molecules will be presented,

considering vertical transitions [3], 0-0 energies [4] and oscillator strengths [5]. It  will  be

shown that a partial self-consistent scheme at the GW level leads to a significantly reduced

dependency on the starting DFT functional compared to both TD-DFT and BSE/G0W0 [3,6],

as well as an accuracy similar to the one of reference wavefunction approaches for singlet [6]

but not for triplet [7] states. Finally, applications on large systems [8] as well as inclusion of

solvent effects [9] will be discussed.
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STARD3 is a cholesterol-specific START protein located in the late endosome membranes

and involved in the cholesterol homeostasis. It regulates the first step in lipid steroidogenesis

controlling  the  mobilization  of  cholesterol  from the  membranes  in  response  to  hormone

stimuli [1]. STARD3 has been found to be overexpressed in about 25% of breast cancer with

prevalence  for  malignant  compared  to  benign  tumours.  Therefore,  the  inhibition  of  this

protein could represent a new strategy to fight tumours growth and spread [2].

The crystal structure of STARD3 has been solved in the  apo form. The three-dimensional

organization of the binding pocket clearly showed that the hydrophobic tunnel is wide enough

to accommodate  only one molecule  of  cholesterol  [3].  Nevertheless,  clear  data  about  the

binding mode of cholesterol are still missing.

As a first  step in this  work,  we analysed how cholesterol  could interact  with the protein

binding site. An in-depth docking evaluation based on a consensus docking approach [4] was

applied to dock cholesterol and allowed us to predict a reliable binding mode for the molecule

into the STARD3 binding site.

Based on the key cholesterol-protein interaction identified by the docking calculations, we set

up a STARD3-tuned virtual screening (VS) protocol, which was used to screen a commercial

dataset of compounds. A five features structure-based pharmacophore model was developed

and applied as  first  filter  in  the screening protocol.  Then,  a  consensus docking approach

followed by molecular dynamic (MD) simulations was employed to refine the screening. 

As  a  result,  four  hit  compounds  were  purchased  and  subjected  to  inhibition  assays.  A

pyrimidine derivative, compound VS1, showed an interesting activity, thus representing the

first reported STARD3 inhibitor.
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The Density Functional Tight Binding (DFTB) method and its evolution Self Consistent Charge DFTB 

(SCC-DFTB) have proven to be efficient methods in order to deal with extensive potential energy 

calculations when simulating the molecular dynamics, Monte Carlo or global optimization procedures 

of large systems.

The electronic bonding and structural organization of transition metals an in particular ruthenium 

requires an adequate description of both delocalized and atom-localized electrons, as well as the mixing

between the d and s atomic shells. In order to account for the balance between electronic delocalization 

and electronic spin coupling, we have complemented the DFTB-SCC scheme with an explicit atom-

localized spin term. We intend to investigate the ability of DFTB to provide reliable results about 

electronic structure, structural properties  and stability of monometallic ruthenium systems covering the

size range from small clusters to larger nanoparticles and the bulk. 

The work presents the benchmark of the method by analyzing RuN clusters (N from 3 to 20) for several 

charge cases, namely  neutrals,  cations an anions. Simple cubic structures with pentagonal patterns are 

often obtained as  representative building blocks as seen previously from other works [J. Phys. Chem. 

B 2004, 108, 2140-2147]. The binding energies per atom obtained fall inside the range of the accuracy 

of DFT calculations reported from other works. Ionization potentials and electron affinities are derived 

as well (both vertical and adiabatic).  

We show that SCC-DFTB is in general agreement with DFT and available experiments in the small-

medium size regime regarding the energetic ordering of the different low-energy isomers and 

simultaneously allows for an overall satisfactory yield of bulk properties. A consistent convergence 

between the cohesive energies of the largest investigated nanoparticles and the bulk’s is obtained. On 

the basis of our results for nanoparticles of increasing size, a two parameter analytical extrapolation of 

the cohesive energy is proposed. This formula takes into account the reduction of the cohesive energy 

for undercoordinated surface sites and converges properly to the bulk cohesive energy. Values for the 

surface sites cohesive energies are  proposed.
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The increasing interest in biomass as a renewable resource to produce biofuels and value-

added  chemicals  is  followed  by  the  need  to  understand  how the  different  properties  of

biomass can affect its behaviour. Cellulose is the most abundant polymer on Earth, and the

main  component  of  biomass.  The  physico-chemical  properties  of  cellulose  are  greatly

influenced by two parameters: the crystallinity index (CI) and the degree of polymerisation

(DP).  These  parameters  are  known  to  affect  the  thermal  stability,  water-binding  ability,

mechanical properties and reactivity of cellulose [1,2]. A widely used technique to regulate

the CI of cellulose is ball-milling. However, there is little to no data about the effect of ball-

milling on the other properties of cellulose.

In this study, four different reference cellulose samples were milled at different times, and the

effects of milling on CI, DP, thermal stability and reactivity were determined with multiple

analytical techniques. CI was determined with X-ray diffraction, and DP was measured with

Size-Exclusion Chromatography.

Thermal stability was evaluated using evolved gas analysis-mass spectrometry (EGA-MS),

which provides fundamental data on the thermal stability and the reaction kinetics. EGA-MS

has  been  widely  applied  to  the  study  of  cellulose.  It  has  been  recently  proved  that

isoconversional methods, usually applied to TGA data, can also be applied to EGA-MS data

[3]. For this reason, isoconversional methods were used to estimate the activation energy for

cellulose pyrolysis.

Finally,  the reactivity  of  cellulose in  a  pyrolytic  environment  was tested using analytical

pyrolysis coupled with gas chromatography-mass spectrometry (Py-GC/MS). This is another

powerful  technique  which  provides  detailed  compositional  data  on  the  pyrolysate.  The

performance of a Py-GC/MS analysis can be enhanced using in situ derivatisation, which

increases the range of detectable compounds [4]. Reactive pyrolysis can be used to overcome

partial derivatisation and reduce the chromatograms complexity, by keeping the sample at

elevated temperature and pressure for long times [5]. Reactive Py-GC/MS experiments were

performed using in situ derivatisation with hexamethyldisilazane (HMDS).

This work provides a starting point for the systematic rationalisation of the effect of milling

on CI, DP, thermal stability and reactivity of cellulose.
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The knowledge of the equilibrium structures of isolated molecular systems of chemical and

biological  interest  is  of  fundamental  relevance  to  gain  detailed  information  on  many

chemical-physical  processes,  in  the  framework  of  the  so-called  structure-property

relationships.  Moreover,  accurate  equilibrium  geometries  serve  as  benchmarks  in  the

development of new computational strategies. Molecular structures obtained through isotopic

substitution  are  subject  to  vibrational  average,  and  then  strongly  depend  on  the  isotopic

species under investigation. In this respect, the determination of the equilibrium structure, i.e.

the  geometry  associated  with  the  Born-Oppenheimer  (B-O)  potential  energy  surface

minimum,  is  the  most  appealing  alternative  [1].  While  this  type  of  structure  is  more

challenging to be inferred at the experimental level, its determination allows the inclusion of

vibrational effects and, within the B-O approximation, it is isotopic substitution independent.

Furthermore,  such  structures  are  directly  comparable  with  theoretical  results.  In  this

contribution  we  present  the  new  program  MSR  (Molecular  Structure  Refinement)  [2],

specifically devised for computing equilibrium structures by means of the semi-experimental

approach  [3,4].  The  program  includes  a  large  panel  of  optimization  algorithms  and  an

extended error  analysis [5].  Particular  attention has been devoted to  the definition of  the

internal  coordinates  to  be  employed  in  the  refinement.  The  approach  developed  in  this

framework,  which is  particularly advantageous when symmetric  molecules  are studied,  is

implemented  as  a  completely  automatic  black-box  procedure.  The  MSR program is  also

equipped with the possibility of including predicate observations in the fit [6]. By means of

this method, the set of input data (i.e. the rotational constants of different isotopologues) can

be augmented by estimates of structural parameters obtained, for example, through quantum-

chemical calculations. In this contribution, the underlying theory and the organization of our

implementation  are  presented  in  some  detail.  The  reliability  of  the  code  is  proven  by

applications  of  A1 coordinates  and  predicate  observations  to  the  determination  of  the

equilibrium structure of medium-size organic and biological molecules.
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Electronic  excitation  energy  transfer  (EET)  is  the  fundamental  process  observed  in
biosystems  and  materials  through  which  an  excited  chromophoric  unit  (the  donor)

nonradiatively transfers the excitation energy to another proximate unit (the acceptor). One of
the most prominent examples of this process is the initial step of photosynthesis, where the

excitation energy is transferred many times in and between pigment-protein complexes until
the reaction center is reached. [1, 2]

The theoretical investigation of EET processes can be highly challenging due to (i) the size of
the involved system, (ii)  the influence of the environment and (iii)  the complexity of the

involved dynamics. [3]
To address these problems we developed an hybrid QM/MM exciton scheme with mechanical

and electrostatic  embedding for  non-adiabatic  molecular  dynamics.  Hereby we utilize  the
Gaussian 09 suite of codes for the electronic structure calculation and combine it with the

SHARC  (Surface  Hopping  Including  arbitrary  couplings)  scheme  [5,  6]  for  the  surface
hopping dynamics.

We apply  our  approach to  a  molecular  dyad consistent  of  a  BODIPY moiety covalently
bonded to a tetrathiophene group. The results using our exciton Hamiltonian were compared

with those obtained on the whole system treated at TDDFT level of theory. [4] Although
covalent linked systems represent quite challenging cases for simple Frenkel exciton models,

the obtained results show an excellent agreement with the full TDDFT. [7]
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In the context  of  solar  energy exploitation,  dye-sensitized solar  cells  (DSCs)[1]  and dye-

sensitized  photoelectrosynthetic  cells  (DSPECs)[2]  offer  the  promise  of  cost  effective

sunlight  conversion  and storage,  respectively.  Dye-functionalization  of  bot  n-  and  p-type

semiconductors (like TiO2 and NiO, respectively) can be either exploited to build active DS

photoelectrodes or tandem DSC and DSPECs devices (Figure 1).  Computational modelling

has  played  a  prominent  role  in  the  development  of  the  DSC  technology,  whereas  the

understanding  of  the  interfacial  processes  in  DSPEC is  still  at  its  inception.  Here  I  will

discuss the recent advances concerning first principle modelling of materials (chromophores,

catalysts and semiconductors),  interfaces and processes of active photoelectrodes for solar

energy and solar water splitting.[3] Particular emphasis will  be devoted to the role of the

solvent on electronic and optical properties of the isolated cell components as well as of the

interfaces. I will present the characterization of the electronic and structural properties of the

complex NiO/solvent/dye/interface, whose investigation is still poor when compared to the

level of understanding reached for TiO2  sensitized photoanodes, from both the experimental

and computational point of view. I will discuss the main methodological limitations of state-

of-the  art  DFT  methodologies  in  predicting  the  energy  level  alignment  across  the

dye/semiconductor  interface  and  the  challenging  definition  of  a  proper  structural  model

needed to reliably capture the interface complexity.[4]

Figure 1. Scheme of a DSPEC
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Time-dependent  correlation  function  approaches  to  molecular  spectroscopies  are

computationally  efficient  alternatives  to  time-independent,  Golden-Rule  or  Kramers-

Heisenberg-Dirac type methods. By directly correlating spectroscopy with dynamics, they are

also  useful  for  interpretative  purposes.  In  these  approaches,  the  spectroscopic  signal  is

typically  expressed as  a  Fourier  transform of  a  quantity  C(t),  which  is  either  a  quantum

mechanical  correlation  function  obtained  from  wavepacket  propagation,  or  a  classical

correlation function obtained from an (ensemble) average over classical trajectories. 

In  the  talk,  I  will  present  some  of  our  contributions  to  the  field.  First,  recent  work  on

vibrationally resolved spectra involving electronically excited transitions (UV/vis absorption

and  emission,  resonance  Raman  and  photoelectron  spectra)  of  medium-sized,  organic

molecules  will  be  reviewed  [1,2,3].  Here,  quantum correlation  (and  cross-correlation)

functions were computed in the harmonic approximation. Extensions to treat non-radiative

transitions, anharmonicity and dissipation [4] will  also be presented. We then move on to

classical auto- and cross-correlation functions, which are used for linear (IR) and non-linear

(VSF,  Vibrational  Sum  Frequency)  vibrational  spectroscopies  of  adsorbates  at  surfaces,

namely water molecules on a (hydroxylated) alumina substrate [5].  
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Computational  chemistry may provide  an important  insight  into the field of  catalysis.  In
sustainable catalyst design it is crucial to understand the mechanism of catalytic reaction and
accurately locate the bottleneck(s) of the process: selectivity and rate determining step(s).
Theoretical methods may provide an important contribution to these studies by exploration of
Potential  Energy Surface of  the investigated  system and resolving  the mechanism of  the
reaction by application of quantum chemistry theories. The huge development of  ab initio

methods and computational  tools  in  the last  decades  enabled scientists  to  study  in  silica

catalytic reactions of biological and industrial significance. In our group we have shown that
a computational protocol consisting of density functional theory and coupled cluster singles
and doubles with perturbative triples calculations together with transition state theory may
enable  to  quite  accurately  predict  the  experimentally  measured  rates  of  the  industrially
important  propene  hydroformylation  by  cobalt  catalyst  [1].  In  a  follow-up  research  the
selectivity and temperature dependence of the reaction is addressed as well. 
Yet  another  goal  of  computational  chemistry  would  be  to  foresee  the  plausible  catalytic
reactions that could be experimentally applicable. One of such reactions would be the direct
functionalization of abundant methane to higher value chemical commodities [2]. Based on
the  latest  evidence  that  small  ring-like  aluminium  oxide  cluster  radicals  could  activate
methane [3], we have explored whether similar compounds, alternant N2Y2 (Y = O, S) rings
investigated previously in our group [4], may be capable of reacting with methane too.
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Ruthenium nitrosyl complexes have found utility in a variety of applications, such as optical
switches, data storage, and medicine. Depending on the ancillary ligands, environment, and
irradiation  wavelength,  these  complexes  can  undergo  either  intramolecular  NO  linkage
photoisomerization or NO photorelease (Figure 1). In the past years, DFT studies of both the
NO  linkage  photoisomerization  and  photorelease  process  in  the  trans-[RuCl(NO)
(py)4]2+complex  revealed  a  complex  two-step  photoisomerization  mechanism  involving  a
sequential  two-photon  absorption.[1,2]  This  mechanistic  picture  has  been  confirmed
experimentally recently.[3] The DFT study was based on the exploration of the lowest singlet
and triplet potential energy surfaces, assuming efficient decay via intersystem crossing (ISC)
from  the  first  singlet  excited  state  to  the  lowest  triplet  state.  A  further  ab  initio
CASSCF/CASPT2 study[4] has supported and completed the DFT and experimental findings.
In  particular,  the  spin-orbit  coupling  outcomes  helped  to  uncover  the  first  steps  of  the
photoisomerization process, suggesting an efficient singlet to triplet intersystem crossing after
light absorption. At the same time, the topology of the CASPT2 potential energy surfaces
highlighted the possibility of several photoisomerization pathways.  It would be desirable to
verify these hypotheses,  by determining the most  probable  pathways.  In  this  context,  the
surface  hopping dynamics  including  arbitrary  couplings  (SHARC)  method[5]  represent  a
useful  analytic  tool  to  better  understand the  photochemistry  of  this  system.  Thus,  in  my
presentation,  I  will  present  the  results  of  the  full  dimensional  surface  hopping  SHARC
dynamics on the trans-[RuPy4ClNO]2+ including non adiabatic and spin-orbit couplings, that
describe: i)  the role of the singlet and triplet excited states ii) the branching ratio between the
different photoisomerization pathways iii) the most important quenching funnels that slow
down the entire N→O isomerization process.

Figure 1. Photoisomerization and photorelease processes of a ruthenium nitrosyl complex 
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Graphene and derived products have shown great promise in the context of gas adsorption,
possible applications range from environmental protection over gas sensing to energy storage.
An important issue in the understanding of the involved principles, will be the movement of
graphene itself. We have performed molecular dynamics calculations on the adsorption of
different gases like methane, hydrogen, nitrogen, water and carbon monoxide including an
intramolecular force field for graphene [1]. More specifically we have used and compared
three different force fields found in the literature [2][3][4], one of which was originally deve-
loped for carbon nanotubes, while the other two were constructed specifically for graphene.
Two of the force fields include stretch, bending and torsional terms, while the third one only
uses stretch and bending terms. We have thus compared the behavior of a flexible graphene
sheet to a more conventionally used rigid gaphene sheet within the context of gas adsorption.

Figure 1. Adsorption of methane on a rigid (left) and flexible (right) graphene sheet.
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Singlet  fission (SF) is an ultrafast  process whereby a photogenerated excited singlet state

transfers  part  of  its  energy  to  a  neighbouring  ground  state  chromophore  to  form singlet

coupled triplet  pairs,  S1 + S0  1TT [1].  This  process can help to surpass  the Shockley-

Queisser limit of organic solar cells [2] because it exploits a high-energy photon to generate

multiple  charge  carriers  capable  for  charge  separation.  For  an  efficient  SF  process,  the

energetic condition of E(T2) > E(S1) > 2E(T1) for SF chromophores has to be met, as, for

instance, in some alternant hydrocarbons and biradicaloids [1]. The excited state dynamics

simulations of (at least) a pair of SF chromophores in molecular crystals or in covalently

linked dimers permit to unravel the mechanism and to calculate the efficiency of SF. Here, we

present the excited state dynamics simulations of a pair of thienoquinoidal molecules, namely

2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF)  [3]  embedded  in  its  molecular

crystal (Figure 1). We employed the surface hopping approach with quantum decoherence

corrections [4]. In this approach, the electronic wave functions and energies are computed “on

the fly” based on the semiempirical FOMO–CI method in its QM/MM version [5]. The results

show that, 2 ps after the excitation, the most populated state is 1TT and very little decay to the

ground state occurs. We also find that the role of spin-orbit coupling is not negligible.

Figure 1. The crystal structure of 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF).
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